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Scattering potentials with LS-terms from first-order Casimir 
operators 
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Quantum Theory Group, lnslihlte of Physics, Technical University of Budapest H-I521 
Budapest Hungary 

Received 27 April 1995 

Abstract. Using a first-order Casimir operator calculated in a non-standard realization for 
the so(3. 1) algebra, we obtain a one-dimensional scattering problem with LS-type interaction 
terms. It is shown that for this realization the square of this operator can be expressed in 
t e rm of the usual quadratic Casimir. Due to this constraint the scattering states are completely 
specified by restricting the possible set of eigenvalues accordingly. The results show that the 
use of extra Casimir operators can provide additional insight into the group thearetical structure 
of the scattering problem. A generalization for the so(2n - 1. 1). n > 2 case is also given. 
The underlying supersymmeuy of the resulting Schriidinger equations is pointed out. The 
supersymmewic charge o p n a t o ~ ~  ax related to our fust-order Casimir opentors. 

1. Introduction 

Since the seminal paper of Alhassid et af [l], the application of group theoretical methods 
for the description of quantum mechanical scattering problems has generated considerable 
interest. In these studies the quadratic Casimir of a non-compact group G with Lie algebra 
g was choosen to characterize the scattering process. Using different coordinate realizations 
for the generators of g, and the eigenvalue problem of the Casimir, one obtains Schr6dinger 
equations with different interaction terms. Since G has unitary irreducible representations 
characterized by a continuous set of eigenvalues, it is possible to relate such values to the 
scattering energy. 

For larger groups, however, we have also Casimir operators other then the quadratic 
Casimir. The number of independent Casimir operators equals the rank of g. For the 
realizations published in the literature so far these operators are either vanishing, or it is 
assumed that the scattering states are the ones annihilated by them [2,3]. The purpose of 
this paper is to point out that there are interesting realizations for which such operators are 
non-vanishing. By combining these additional Casimir operators with the quadratic Casimir, 
one can describe a more general set of scattering states, not necessarily annihilated by these 
extra operators. 

The organization of this paper is as follows. In section 2. by using a special matrix 
valued realization for the rank two Lie algebra so(3, 1) we calculate both of the non- 
vanishing Casimir operators. One of them is the usual quadratic Casimir (C), the other is 
shown to be a first-order differential operator (C‘). It turns out, however, that (C’)’ for 
the realization in question can be expressed in terms of C. This observation enables us 
to single out a restricted set of eigenvalues characterizing the scattering states of a one- 
dimensional scattering problem with LS type interaction terms. In section 3. we generalize 
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ourfirst-order Casimir operator (C’) of section 2. for the Lie algebra so(d, l), d = 2n - 1. 
Calculating the square of these operators we also obtain potentials of LS type with LS 
corresponding to the SO(d)  spin-orbit term. Such terms are precisely the ones obtained for 
the algebra so@, I )  in [4] by calculating the quadratic Casimir (C). By demonstrating that 
(similar to the so(3,l) case) (C‘)’ and C are not independent, we clarify the connection 
between the results of [4] and this paper. We also point out the underlying supersymmetry of 
the resulting Schmdinger equations. The supersymmetric charge operators are related to our 
first-order Casimir operators. Some comments and conclusions are presented in section 4. 

2. Casimir operators from a non-standard realization of S O ( 3 , l )  

As a starting point we consider the following set of first-order matrix-valued differential 
operators: 

1 1  
1 + X 4 2  Jm# = L6,p + 4 U=# Ma# = KS,, + - - 0.8 x x (2.1) 

where 

Lj = -icjmXman K, = -i(X& + Xj&) j = 1,2,3 (2.2) 

and the coordinates ( X i ,  X,) = (X, X4), j = 1,2 ,3  lie on the upper-sheet of the 
hyperboloid H~ defined by -X2 + (X4)2 = 1. a, = a/ax,, a, 3 a/ax4, ui are the 
usual 2 x 2 Pauli spin matrices. One can show that this set of generators satisfy the 
commutation relations of the so(3, 1) algebra 

[Jj,Jm]=i&jmJ. [Jj.Mml=i&jmnMn [M~,M,]=-~E, , , ,~J~  (2.3) 

where the matrix indices are left implicit. Such matrix valued realizations were introduced 
in [4,5] in order to describe a more general class of interaction terms group theoretically. 
From the mathematical point of view the operators of (2.1) are the generators of the induced 
representation for so(3.1) induced by the spin-f h e p  of the so(3) - 4 2 )  subalgebra. 

Since SO(3 , l )  is a group of rank two, there are two independent Casimir operators. 
They are, the quadratic Casimir C = 2(J2 - Mz) ,  and C’ 8JM = 8 M J ,  commuting 
with the six operators of (2.1). The origin of the numerical factors in the definition of C 
and C‘ will be clarified in section 3. Note that, had we used the operators L and K also 
spanning an so(3.1) algebra, we would have obtained for C’ = 0. However, we will see 
that for the generators J and M C’ # 0. 

00, 0 e 
B < I, 0 < (p < 21 related to the ones (X, X4) by 

Let us now calculate C and C‘, using the coordinates (Q, 0 ,  (p), -00 < Q 

X = a(@, p) sinhg X4 = coshe nz = 1 (2.4) 

where n(B, (p) (sinBcos(o, sinesinq, cos@. We also introduce the operator 

M z L-U+ 1 (2.5) 

anticommuting with the operator U . n = uini, i.e. { M ,  U . n) = 0. Moreover, one can 
prove that 

(2.6) M ( M  - 1) = Lz M ( M  + 1) = 2 J z -  L2+ f. 
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Using these results, straightforward calculation gives 

(2.7a) 

(2.76) 
M ( M + 1 )  M ( M - 1 )  3 

- 4 -1 C = T C T - l = 2  -+ - 
(C$ 4cosh’;e 4sinhz& 

where T sinh e is a similarity transformation. This similarity transformation is convenient 
because the volume element for the hyperboloid is proportional to sinh’e. So when using T 
this part of the volume element can be included into the wave function and one can use the 
volume element sin2BdBdyde. Note that according to (2 .7~)  C’ is afirst-order differential 
operator. Moreover, by virtue of the property [ M ,  un} = 0 it is also Hermitian, as it has 
to be. 

The unitzry irreducible representations of SO(3,l) we are interested in are labelled 
by the pair of numbers (io, j l )  where j o  = 0, &$, hl, =t$, . . . and j l  = ik, k E R [6]. 
Scattering states have to be chosen from the on= labelled by (jo. jl), and k is related to 
the scattering energy. Moreover denoting the possible set of scattering states by I jo,  jl) we 
have 

Due to our choice of coordinates we define (e, 8 ,  (p; culjo, j l )  = u,o,jz:e(e, 8, (p) and the 
similarity transformed function Y,o,j,;a = sinheujo.j,;o. Note that Yj,,,j,;a is an eigenfunction 
of the operators C and C‘ with eigenvalues Z(jOz + j,’ - 1) and (-8ijoji). respectively. 

Now we calculate the square of the operator C’. Since [ M ,  un) = 0 and (udZ = 1 
one can easily see that 

M ( M  + 1) M ( M  - 1) - ,Z C =-16 -+ ($ 4cosh24e 4sinh’fe 

Comparing equations (2.7b) and (2.9) we get the relation 

$C” + 2C + 3 = 0 

(io2 - 4 ) ( j l 2  - a )  = 0. 

(2.10) 

implying by virtue of (2.8a),(2.8b) the constraint for the pair (jo, j , )  

(2.1 1 )  

We are interested in irreps, hence we have to satisfy (2.1 1) from the restricted set for 
which j l  ik. In this way we managed to single out the states labelled by the numbers 
(ki, ik). It is easy to prove that these states are indeed scattering states. For this purpose 
we can use the eigenvalue problem of Ct2 or C, both of them resulting in the Schrodinger 
equation 
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In order to specify further this equation we have to solve the eigenvalue problem of the 
operator M acting merely on the angular part of q*i,ik,A(e, 8, p) = R*i,ik,h(e)@h(O. (p) as 

(2.13) 

According to (2.6) A. can be related to the eigenvalue of L2 which is Z(I + 1) hence for 
1 > 1 there are two values of A, i.e. 

M@r(B, 9) = h@r(B, p). 

A = (  -I  

1 + 1  

and for I = 0 the only possible value is A = 1. 
By virtue of (2.14) we obtain two Schriidinger equations 

with potentials 

(2.14) 

(2.15) 

(2.16a) 

(2.166) 

The second part of these potentials exhibits an implicit dependence on j = I zk i. (For the 
relation between h and j see equation (2.6).) After the change of variable y = -sinh2fe 
we can write R * ; , i k , j ( ~ )  as 

where F ( A ,  B ;  C; y) satisfies the hypergeometric differential equation. Exploiting the 
asymptotic properties [41 of F we can read off the reflection coefficient. The final result is 

(2.18) 

I I wheren, = O  when j = I +  I, nj = 1 when j = I  -5. 

3. Generalization for SO(2n - 1, 1) 

Having gained some knowledge from the SO(3.1) case, now we try to write down a 
generalization of C' for the groups SO(d, l),  d 2n- 1. First of all we need the SO(d,  1) 
generalization of the generators appearing in (2.1). According to the results of [S] the 
modified symmeny generators for the algebra so(d, 1) are 
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where 

Lkj  = -i(xkaj - X j & )  (3.2) 

Here ( X j ,  X,+l) = ( X ,  & + I )  are coordinates on the upper sheet of the hyperboloid H d  
defined by -Xz + (Xd+l)z = 1, and a, a p x , ,  &+I = a/ax,+,. The mamx-valued 
operators (sjk)@ are chosen as 

Mj = -i(Xdflaj + X,&+l) k, j = 1 , .  . . , d. 

1 s.. - -[r. r. (3.3) '1 - 4i ' 1  I1 

where the mahices 
dimensional Clifford algebra, i.e. we have 

(I, ,9 = 1,2, . , . , 2Ld/*' = 2"-' are the generators of a d- 

{rj, r k )  = 26jk. (3.4) 

where the mahix indices a. ,9 = 1 , 2 . .  . ,2"-' are implicit. The generators Sij span an 
so(d) algebra, i.e. 

[si,, & I ]  = i ( 8 j k s j l  + 6 j l s j k  - 8jiSjk - 6 j k s i i ) .  (3.5) 

One can check that the generators J k j ,  Mj satisfy the commutation relations of the so@, 1) 
algebra [51 

(3.64 
(3.6b) 

( 3 . 6 ~ )  

Note that the operator M J  = J M  of the previous section can be written as 

C ' = ~ M J = E , ~ ~ ~ M ' ~ M ~ '  a,p, y . r =  1 , 2 , 3 , 4  (3.7) 

where M4' 
SO(2n - 1, 1) is 

Mi and M'j = Jij = Ei jk  Jk. Hence a natural choice for C' for the groups 

C' = E,,#, ....J~ MuCB' ..Man'"h (3.8) 

where M"+" E Mi and M i ,  E Jij ,  In fact C' is a Casimir operator as can be easily verified 
by using the commutation relations. Moreover, it is afirst-order differential operator having 
the form 

(3.9) 

where I'z. = r1r2.. . r2-l. (For odd dimensions r d + l  is a number times the identity 
matrix.) The derivation of (3.9) is presented in the appendix. Note that had we used the 
usual operators Lij and Ki instead of the matrix-valued ones Jij and Mi. we would have 
obtained C' = 0. We also need the corresponding expression for the quadratic Casimir 
which is [5,7]: 

c = M , B M ~  6 - - J . .  CI J . .  - 2M.M.  , I  (3.10) 
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where the indicies are raised and lowered by the metric g,, = diag(-I, -1,. , . , -1, 1). 

[ M ,  r .  n) = 0 
Now we define the d-dimensional generalization of the operator M as that satisfying 

d - 1  d - 1  
M = &,S, + ‘c + ( T ) .  (3.1 1) 

We will need the expressions of the quantities f l i j L i j  and 5Ji jJ; j  in terms of M later. In 
order to derive them we use the formulae [8] 

Lz 4LijLi j  = X(Z - d + 2) (3.124 

and 

Using these results we get 

L2 = M(M - 1) - f (d  - l)(d - 3) 
J z  = M 2  - i ( d  - l)(d - 2 ) .  

(3.12b) 

(3.13~) 

(3.13b) 

As a next step we calculate the operators C’ and C using coordinates (e, n) --CO c 
e c m, related to the ones (X, X,++l) by 

X = n s i n h e  Xd+~=coshe  nZ=l (3.14) 

as in (2.4), where n depends on d - 1 polar coordinates of the unit sphere Sd-‘. After 
straightforward calculation we get 

M ( M + l )  M ( M - 1 )  1 
c = T c T - ’ = ~  -+ - - -d(d - 1) ($ 4cosh21e 4sinh’fe 8 

where we also performed the similarity transformation 

(d- 1)/2 T (sinh e) 

for the same reason as in section 2. 

(3.154 

(3.15b) 

(3.16) 

In order to relate these operators to one-dimensional scattering problems we have to 
solve their eigenvalue problem. Moreover, we have to characterize the scattering states 
in terms of &he unitary irreducible representations of SO(2n - 1,l). These unireps have 
been classified in 16.91. In these papers it was also argued that the same formulae for the 
eigenvalues of the Casimir operators can be used as in the case of of the corresponding 
compact groups SO(2n). Using the results of these papers one can see that these 
imps can be labelled by n-component weight vectors m, and there are ineps for which 
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n = (m1, . . . , m,,-~, ik). After introducing the vector 6 (half the sum of the positive roots) 
with components 

Si = n - i  i = 1, ... , n  (3.17) 

we can write the the following expressions for the eigenvalues of C and C' [7]: 

(3.18~) 

(3.18b) 

We remark that for the groups SO(2n - 1 , l )  one can define 2n Casimir operators by the 
expressions 

c P - - ~ ~ 1 ~ ~ 1 . .  U, a, . M~~ U, p = 1,. . . ,2n. (3.19) 

It can be shown that the operators for p odd are not independent hence we expect that the 
remaining n operators (their number is equal to the rank of SO(2n - 1, 1)) will completely 
characterize the irreps of SO(2n - 1, 1). However, it can be shown that these operators 
cannot discriminate between all of the irreps hence we have to replace one of the operators 
by the operator C' of (3.8) [71. Usually the operator to be replaced by C' is C,. Moreover 
we see that C 

Now we turn back to our original problem of interpreting the eigenvalue equations for 
C and C' as Schrodinger equations for one-dimensional scattering problems with LS terms. 
For this purpose we calculate the square of C' as in section 2. The result is 

CZ. Note that for the groups S0(2n ,  1) no such substitution is needed. 

Comparing equations (3.18b) and (3.20) and using the result rhz = (-1y-I we get the 
relation 

(n!(2n - 3)")-'~''+ 2~ + (2n - 1)(n - 1) = 0. (3.21) 

It is important to realize that equation (3.21) is merely one equation among the many 
possible others containing the remaining n - 2 Casimir operators. Hence we cannot 
use equation (3.21) and the eigenvalue equations (3.18a),(3.18b) to obtain values for the 
components of the vector m = (m,, . . . , "-1, ik) as in (2.11). (We have merely one 
equation for the n - 1 unknowns.) However, by noting that 

2"-l 2 
(2n -3)!! i=, 2(n - i) - 1 

by virtue of (3.18b) we can write 

m , + n - i  
-; + (n - i)  

(%!(a - 3)!!)-*C'*(ml,. . . I mn-j, ik) = k2 (3.22) 
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Hence by choosing the weight vector m to be 

m = (-L z ,  -L 2 . . . . , - ! .  2’ ik) (3.23) 

the right-hand side of (3.22) reduces to k2. Moreover, by calculating the eigenvalue C(m) 
with the (3.23) choice using (3.18~) one can see that (3.21) is also satisfied. The final result 
for the eigenvalue problem of Cf2 reduces to 

In order to write this equation as a pair of Schrodinger equations we have to solve the 
eigenvalue problem 

M%(n)  = A@j.(n). (3.25) 

of M as in section 2. Knowing the eigenvalue of Lz which is I ( ! +  d - 2) [7] and the 
(3.13~) expression relating L2 and lvl we get for A the values 

d - 3  

(3.26) 

we can write down a pair of Schrodinger equations of the (2.15) form with scattering 
potentials 

(3.27~) 

d ( I +  7 - 1)2- f ( I  + - 2)2 - L 
(3.27b) 

The calculation of the reflection coefficient is the same as in the previous section. The 
reskit is 

2 4 - vf,d,-(e) = 4sinh2& 4cosh’fp ‘ 

(3.28) 

I where n. - 0 when j I + -. n .  - 1 when j = I - f. We see that for d = 3 we obtain 
the results of the previous section. 

We close this section with the important observation that we can associate a 
supersymmetric partner Hamiltonian with the Hamiltonian of (3.24) in the following way. 
Let us define the operator A- and its adjoint A+ as the ones 

I -  2 1 -  

(3.29) 

where W(e) is the superpotential. Note that these operators are matrix-valued first-order 
differential operators, since M is a 2”-’ x 2”-’ matrix. As a next step we define the 
(supersymmeby) charge operator Q and its adjoint Qt as the 2”-2x2zn-2 nilpotent matrices 

e=(:- :) Q t = ( o  0 A+ o )  (3.30) 
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By defining the supersymmetric Hamiltonian as 

( H +  o ) = ( A + A -  - 0 ) 
0 A-A+ 

'H= 
0 H -  

(3.31) 

we can see that we are given a realization of the supersymmetry algebra 

K = [ Q , Q t }  Qz=O Q t 2 = 0  ['H, QJ = ['H, Q'l = 0. (3.32) 

Note, however, that unlike the realizations usually used in the literature (see, e.g., [lo, I l l )  of 
supersymmetric quantum mechanics (SUSYQM), the operators A* are matrix valued. Hence 
our realization gives rise to a simple model of the multichannel supersymmetric scattering 
problem in the spirit of [121. 

Moreover, it is interesting to see that our first-order Casimir operators turned out to be 
related to the supersymmeay generators Q and Q'. Indeed, in (3.30) we used At - r .nC' 
(see equation (3.15a)). By calculating the Hamiltonians A+A- and A-A+ we obtain the 
interaction terms 

M ( M  rt 1) M ( M  + 1) v* = - 
4sinh2& 4 c o s h z i ~  

(3.33) 

that are supersymmetry partners of each other. One can see that H -  is just the Hamiltonian 
used in (3.24). 

4. Conclusions 

In this paper we initiated the examination of the possible role of Casimir operators other 
than the quadratic Casimir, in order to understand scattering problems characterized by a 
non-compact symmetry group G. As an example we considered the groups SO(2n - 1, 1). 
We used a matrix-valued realization for its Lie-algebra so(2n - 1, I), which from the 
mathematical point of view is the representation induced by the spinor representation of 
the maximally compact subagebra so(2n - I). For this realization it was shown that a 
non-vanishing Casimir operator (C') can be defined. Although this operator is of nth-order 
in the generators (see equation (3.8)) for the particular realization it  turns out to be afrrsr- 
order differential operator. This operator was used to single out a more general set of 
scattering states then the ones hitherto used in the literature. Moreover, these states are the 
ones corresponding to interaction terms of LS-type. Explicit expressions for the reflection 
coefficients were also given. 

Note that our results are also valid for the groups S0(2n ,  I). Indeed, a straightforward 
calculation shows that the operator 

commutes with the operators of (3.1) ( rd+t  for d even anticommutes with all ri. hence it 
commutes with S, so with both Jir and M j ) ,  hence it is a Casimir operator irrespective of 
whether d is even or odd. However, the canonical form of this operator and its spectrum 
for d even (see equation (3.8) for d odd) is not known to the author. 
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We have also shown that our first-order Casimir operators can be used to obtain a 
matrix-valued realization of the SUSY algebra (3.32). According to the results of [lo] this 
supersymmetry is not at all surprising, since our realization of the so(2n - 1) algebra is in 
terms of coordinates on the rank-one symmetric spaces SO(2n - 1, I)/S0(2n - I )  which 
are the hyperboloids On such spaces the quadratic Casimir C generates geometric 
motion, i.e. this operator can be regarded as the kinetic term when quantizing the classical 
geodesic motion [ 5 ] ,  and shows explicit supersymmetry [ l o ] .  However, we have used a 
non-standard matrix-valued realization for C and we obtained a more general realization 
for the SUSY algebra than in [lo]. It would be interesting to generalize these ideas of using 
vector-valued wavefunctions and the theory of induced representations in order to anive at 
a grouptheoretical description of scattering problems with coupled channels. 

Acknowledgments 

This work has been supported by the OTKA under Grant No TO17179 and by the 
D F G M T A  under Contract No 76/1995. 

Appendix. Calculation of the Casimir operator C' 

Our starting point is the definition of C' as given by (3.8) of section 3. Recalling that 
Md+" E M i .  and M i j  E J j j ,  i, j = 1. . . . , d = 2n - 1 we have 

C' = 2n&d+lj, i2h.. . i .  j .  Mj, Ji,j2 . . . Ji. j . .  (AI) 

Since Jjj = Ljj + Sjj and .q,k...,,MjLjk.. 1 L,, = 0 due to the antisymmetry of &ij k . . . pq ,  

we get 

C'= 2nEi jkr  m . . . p q M i ( S , t S ~ m . . . S p q  + (n - l)LjkStm ... Spq).  (A2) 

Using the (3.3) and (3.1) definitions of Ski and Mj and the (3.4) properly of the r matrices 
we obtain 

By virtue of the useful property of r matrices [13] 

where ri,i 2...ik E rli,ri,. . ri.1 and the symbol [il ... in] denotes antisymmetrization in the 
corresponding indices, we have 

tij . . ,~rj .. . r, = (d - i)!rird+l (A6) 
cpq j . . . s r j  = - i (d  -2)![rP, rq~rd+l = -2i(d -2)!sPqrd+,. ( ~ 7 )  
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(In the derivation of (A@, (A7) we have used the properties & t + ~ , _ , ~ ~ k , . . , b - ~  = (d - 1)!atj 
and & p ~ ~ , , . . ~ ~ . ~ & , ~ k , . . , ~ . *  = (d - 2)!(S,,Sq, - S,,S,,) of the Levi-Civita symbol in d 
dimensions.) Inserting these results in (A3) and calculating the commutator [ X r ,  Spp] 
using 

[s,,, r,i = -i(aqrrP - wq) (A@ 

we obtain (d = 2n - 1) 

which by virtue of the relation Zz-”(2n - 2)! = 2(n - 1)!(2n - 3)!! is expression (3.9) of 
section 3. 
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